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Summary

Classically, the distinction between a fixed vs a random factor in analysis of variance has
been considered a binary choice. Here, we consider that any given factor can also occur
along an incremental series of steps between these two extremes, depending on the sampling
fraction of its levels from the wider population. Fixed factors occur where all possible
levels are drawn and random factors occur in the limit as the population of possible levels
approaches infinity. When some identifiable fraction of a finite population of possible levels
are drawn, the factor can be thought of as something in between fixed and random, and can
be analysed explicitly as finite directly within the ANOVA framework. Requiring explicit
specification of the population size from which observed levels are drawn for each factor,
we provide a unified approach to derive expectations of mean squares (EMS) in ANOVA
for any types of factors along the entire graded progression from fixed to random, inclusive,
that may be nested within or crossed with one another, from balanced, asymmetrical or
unbalanced designs, including multi-level hierarchical sampling designs, mixed models and
interactions. Implications for estimation of variance components, tailored bootstrap methods,
and tests of hypotheses under minimal assumptions of exchangeability are described and
further extended to multivariate dissimilarity-based settings.
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6

1. Introduction7

Analysis of variance (ANOVA) is one of the most widely used statistical techniques8

(Speed 1987; Gelman 2005; Großmann 2014), providing a partitioning of the measured9

variation in a random variable in response to complex experimental designs and sampling10

programmes (Cochran 1977; Winer, Brown & Michels 1991; Bailey 2008). Derivation of11

expectations of mean squares (EMS), allowing unbiased estimation of variance components12

and hypothesis-testing of individual terms in ANOVA models (Searle, Casella & McCulloch13
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1992), has a long and distinguished history (e.g., Cornfield & Tukey 1956; Hartley 1967; Rao14

1968; Searle 1971; Hartley, Rao & Lamotte 1978).15

There remains, however, long-standing controversy concerning the ‘correct’ derivation16

of EMS, particularly for mixed models and unbalanced designs (Hartley & Searle 1969;17

Hocking 1973; McLean, Sanders & Stroup 1991; Nelder 2008). Inconsistencies appear18

largely to be driven by differences in the choice of constraints imposed on parameters of the19

linear ANOVA model, which is well-known to be overparameterised (e.g., Neter et al. 1996).20

Yet, different parameterisations must to some extent remain arbitrary, as they yield the same21

partitioning, sum of squares and mean squares for ANOVA. Nevertheless, Searle, Casella &22

McCulloch (1992) describe different EMS resulting from models where effect parameters23

associated with levels of a fixed factor are either assumed to sum to zero – referred to as a24

‘summation restriction’ – or not (see Searle, Casella & McCulloch 1992, p. 121 et seq.). The25

EMS for mixed models that are presumed to hold in the absence of such a restriction are26

provided by default in certain widely-used statistical computer programs for mixed-effects27

balanced or unbalanced ANOVA, such as ‘proc mixed’ in SAS (Littell et al. 2006).28

Voss (1999) offered a resolution to the so-called ‘mixed models controversy’ for the29

case of a two-way crossed design with interaction (where one factor is fixed and the other30

is random) by showing that if levels of the random factor are considered to be a finite31

subset of levels from a very large ‘superpopulation’ of possible levels, then the EMS32

obtained under a so-called ‘unconstrained-parameter’ (UP) model match those obtained33

under the ‘constrained-parameter’ (CP) model (i.e., a model with summation restrictions),34

hence justifying the use of the latter for these two-factor designs. Nevertheless, ongoing35

disagreements persist, even for this relatively simple case. Lencina, Singer & Stanek (2005)36

suggested that F test statistics constructed using EMS derived from UP vs CP models ‘are37

really directed at different hypotheses’. In contrast, Nelder (1998, 2008) contended that38

imposing any summation restrictions on ANOVA parameters is a ‘temptation’ that ‘must be39

resisted’.40

We consider that arbitrary aspects of the parameterisation should not affect the EMS for41

a given ANOVA design. Rather, we show that by articulating the size of the inference space to42

which each factor is intended to refer, treating each factor in its proper place along a gradual43

series of steps (i.e., from being fixed, where all possible levels are observed, to random, where44

only a small sample of possible levels from an effectively infinite population are observed),45

the entire debate is rather cleanly dissolved and the resulting EMS distill to a singular, unified46

solution. Our results hold for ANOVA models that are balanced or unbalanced, including47

multi-way interactions, mixtures of different types of factors, hierarchical (nested) factors, or48

any combination(s) of these things. In addition, they do not impose summation restrictions,49

nor any other arbitrary parameterisation of the ANOVA model in the sample space.50
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Our approach follows directly from Cornfield & Tukey (1956), who first articulated the51

concept of the experimenter sampling levels of factors from finite vs infinite populations52

and showed the resulting outcomes for EMS in two-way and three-way crossed balanced53

designs. We combine this with the landmark work of Hartley (1967), Rao (1968) and54

Hartley, Rao & Lamotte (1978) for balanced or unbalanced cases, thereby incorporating the55

sampling fraction from finite populations into the derivation of EMS by ‘synthesis’ for any56

general complex ANOVA design. Although Searle & Fawcett (1970) also considered EMS in57

variance-component models for finite populations, including unbalanced designs, their focus58

was on random-effect models and they did not articulate the ultimate logical consequence of59

a sampling fraction equal to 1, which naturally corresponds to a fixed effect.60

Motivation for this work arises in (at least) two contexts. First, it resolves prior61

historical debates concerning EMS and how they may be derived. Although Bayesian62

estimation techniques are becoming more common (e.g., Gelman 2005), classical EMS63

in ANOVA models are still relied upon in many settings, including modern computer-64

intensive multivariate dissimilarity-based analyses, which do not assume normality, but only65

exchangeability of numerator and denominator in the construction of pseudo-F statistics66

for hypothesis-testing and estimation in non-Euclidean spaces (Anderson, Gorley & Clarke67

2008). These approaches are widely used in ecology (e.g., Anderson et al. 2005; Terlizzi et al.68

2007) and, increasingly, in genetics (e.g., Zapala & Schork 2006, 2012), where dissimilarity69

or distance matrices often form the fundamental starting point for analysis.70

Second, we desire flexibility in the definitions of factors for situations where the71

sampling fraction is neither equal to 1, nor infinitely small. For example, in ecology,72

environmental impact study designs often contrast responses of organisms (usually counts73

of abundance or biomass) measured at a purportedly impacted location vs one or more74

‘control’ (reference or unimpacted) locations (Underwood 1991, 1992). The control locations75

are correctly viewed as a random sample from a larger population of control locations that76

are similar to the impacted location in ways other than the purported impact (which may77

be, e.g., a sewage outfall, an oil-drilling platform, etc.) (Underwood 1994; Glasby 1997).78

To increase the power and the scope of inferences, it is desirable to have as many control79

locations as possible (Glasby 1997; Glasby & Underwood 1998); in practice, however, the80

possible number of control locations, particularly at large spatial scales, is likely to be both81

finite and limiting. We show here how such asymmetrical designs can be modeled directly82

so that a single impact location can be specified as fixed, while reference locations can be83

treated as either random or drawn from a finite population of a specified size.84

In Section 2, we provide the derivation of EMS for ANOVA models that combines the85

notion of a progression of steps from fixed to random factors (Cornfield & Tukey 1956) with86

the use of U matrices (Hartley 1967; Rao 1968), beginning with the one-way design and87
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moving to two-way crossed and nested designs, including finite sampling of errors. Section 388

then provides a general formulation for any ANOVA model under this ‘new synthesis’,89

followed by an extension to dissimilarity-based approaches for multivariate analysis. The90

implications of the new synthesis for statistical inference, including construction of test-91

statistics, hypothesis-testing through exchangeability and estimation of variance components,92

are described in Section 4. An important practical consequence of allowing for finite93

populations in hierarchical sampling designs is to increase the power to detect effects of94

factors of interest. This will be demonstrated by example in Section 5 through a case-study95

of the potential environmental impact of a sewage outfall on assemblages of molluscs in the96

Mediterranean sea along the coast of Italy (Terlizzi et al. 2005). Section 6 concludes with97

a brief discussion of alternative methods, including hierarchical Bayesian modelling, and98

suggestions for future work.99

2. Derivation of EMS100

2.1. One-way design101

Consider a one-way analysis of variance for a factor (say, ‘factor A’). Suppose the102

inference space for factor A contains a total of A possible individual levels of the factor,103

each with its own effect, α∗
i . Let a sample of size a of values of effects, α∗

i , i = 1, . . . , a,104

be drawn independently from the population of A possible effects in the full inference space.105

Note that, for what has classically been referred to as a fixed factor, one considers that one has106

drawn all possible levels in the entire inference space of interest, so a = A and the sampling107

fraction is a/A = 1. In contrast, for what has classically been referred to as a random factor,108

the value of A is considered to be arbitrarily large, and the sampling fraction is treated in the109

limit as110

lim
A→∞

a/A = 0.

It is easy to conceive, however, of a finite population of levels, where A is known and A > a.111

Thus, the sampling fraction a/A is neither trivially small, approaching zero (random), yet112

nor is it precisely equal to 1 (fixed). Thus, as in Cornfield & Tukey (1956), our approach113

conceptually replaces the binary contrast between a fixed vs a random factor with a gradual114

progression of incremental steps, which depends critically on specification of the number of115

levels drawn, a, by reference to the size of the inference space, A, and thus on the sampling116

fraction.117

We shall assume that, in the inference space, the effects α∗
i ∀ i are independent118

and identically distributed as random variables with mean µα and variance σ2
α. Thus,119

E(α∗
i · α∗

i′) = µ2
α ∀ i ̸= i′ and E(α∗

i · α∗
i ) = µ2

α + σ2
α. For simplicity in what follows, but120
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without loss of generality, the values of α∗
i can be centred in the inference space, as in Searle121

& Fawcett (1970), which gives122

αi =

(
α∗
i −

A∑
i=1

α∗
i /A

)
. (1)

A key point here is that this does not impose any kind of summation restriction on the123

original effects α∗
i , which remain in all situations free to vary independently. An important124

consequence of this is, however, that the resulting αi are not independent of one another, and125

this will be true regardless of the size of the sampling fraction inherent in the original design126

and inference space. Specifically, E(αi) = 0 but127

E(αi · αi′) = − 1
A · σ2

α ∀ i ̸= i′, and (2)

128

E(αi · αi) =
(
1− 1

A

)
· σ2

α. (3)

See Appendix I for proofs of (2) and (3). Note that var(αi) = var(α∗
i ) = σ2

α. The variance129

component, σ2
α, is generally of greatest interest for estimation, hypothesis-testing and130

inference. Equations (2) and (3) are succinctly expressed by131

E(αi · αi′) =
(
δii′ − 1

A

)
· σ2

α (4)

where δii′ = 1 for i = i′ and δii′ = 0 for i ̸= i′. This fundamental result allows derivation132

of expectations of mean squares (EMS) in ANOVA models that allows factors to occur133

anywhere along the fixed-to-random gradation. Equation (4) simultaneously embraces also134

the two natural end-points of the sequence; namely, for a fixed factor we have A = a, and135 ∑a
i=1 αi = 0 so σ2

α =
∑a

i=1 α
2
i /a, while for a random factor, where A → ∞, we have the136

standard results137

lim
A→∞

E(αi · αi′) = 0 ∀ i ̸= i′, and
138

lim
A→∞

E(αi · αi) = σ2
α.

Consider a one-way ANOVA model for a sample of ni independent observations on a139

response variable Y within each of the i = 1, . . . , a levels of factor A. Let y be a column140

vector of length N =
∑a

i=1 ni containing the observed response values and let UA be a141

N × a indicator matrix for the design, where the ith column u
[A]
i contains a value of 1 in142

every row where the corresponding observation occurs in group i and zeros elsewhere. Each143

row of UA has only a single value of 1, indicating the group to which each observation144
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belongs. The model can be written as145

y = µ1+
a∑

i=1

αiu
[A]
i + ε (5)

where 1 is a N × 1 vector of 1’s, µ is an overall mean, and ε is a N × 1 vector of errors, which146

are assumed to be independent and identically distributed random variables with expectation147

zero and variance σ2
ε . We assume also that effects and errors are mutually independent of one148

another. Without loss of generality, let y be centred on the overall mean. The expectation of149

the total sum of squares (SS) under the model is then150

E
(
tr
[
yyT

])
= σ2

α · tr

[
a∑

i=1

a∑
i′=1

u
[A]
i u

[A]T
i′

(
δii′ − 1

A

)]
+ σ2

ε · tr[I]

where “tr[·]” indicates the trace of a matrix, superscript “T” indicates the transpose and I151

denotes a N ×N identity matrix. We have chosen to consider the SS as the trace of an outer152

product matrix (N ×N ) for simplicity in what will follow for the extension to dissimilarity153

matrices. This expectation holds for any balanced or unbalanced one-way model, does not154

assume normality, and clearly incorporates the population size (A) from which the observed155

levels (a) of factor A are drawn.156

Next, consider the usual ANOVA partitioning of the total SS. Let X be a N × r matrix157

of full rank r containing orthogonal contrasts for a factor. For example, matrix XA of rank158

r = (a− 1) associated with factor A might be easily obtained by subtracting the last column159

of UA from each of its previous columns, so that the (a− 1) columns of XA contain contrast160

values (+1 vs −1) for the contrasts: group 1 vs group a, group 2 vs group a, . . . , group (a− 1)161

vs a, and with zeros elsewhere. For the X matrix associated with any particular model (e.g., a162

single factor, or a single term, such as an interaction term, or a set of terms), a so-called “hat”163

matrix H = X[X′X]−1X′ provides a classical linear projection of the response values onto164

the space spanned by the model contained in X.165

For the full one-way model in (5), including the overall mean, we have Xfull =
[
1 | XA

]
166

of rank a. The reduced model is that considered under some null hypothesis. In the one-167

way case, under the null hypothesis H0: σ2
α = 0 (or equivalently, H0: αi = 0 ∀i), the reduced168

model is Xreduced =
[
1
]
. The orthogonal projection matrix to use for factor A is then obtained169

by differencing: HA = Hfull −Hreduced. This general formulation allows for any type of170

partitioning (e.g., Type I, II or III SS, sensu Searle (2006)) to be obtained for individual171

terms in ANOVA models in balanced or unbalanced designs to be constructed according to172

relevant null hypotheses. For the one-way case, the expectation for the among-group SS for173
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factor A is174

E
(
tr
[
HAyy

T
])

= σ2
α · tr

[
HA

a∑
i=1

a∑
i′=1

u
[A]
i u

[A]T
i′

(
δii′ − 1

A

)]
+ σ2

ε · tr [HA]

while the expectation for the within-group or residual SS is175

E
(
tr
[
(I−Hfull)yy

T
])

= σ2
ε · tr [I−Hfull] .

Let ∆A be the a× a matrix comprised of the elements {∆ii′} =
{
δii′ − 1

A

}
, then the176

expectation of the mean square (EMS) for factor A is177

E (MSA) =
1

(a−1)

{
tr
[
HAUA∆AU

T
A

]
· σ2

α + tr [HA] · σ2
ε

}
and the EMS for the residual is178

E (MSR) =
1

(N−a) tr [I−Hfull] · σ2
ε

These results mirror those obtained by Cornfield & Tukey (1956); however, our derivation on179

the basis of U matrices, as in Hartley (1967) and Hartley, Rao & Lamotte (1978) allows the180

key results of Cornfield & Tukey (1956) to be extended, so that EMS can be readily obtained181

for any term in any multi-way balanced or unbalanced ANOVA design, including explicit182

specification of the inference space being examined for every factor in the model.183

2.2. Crossed design184

Consider a two-way model with factor A having effects α∗
i for levels i = 1, . . . , a185

sampled from a population of size A and factor B having effects β∗
j for levels j = 1, . . . , b186

sampled from a population of size B. Interaction effects for each of the a× b combinations187

of levels of A and B are denoted γ∗
ij . The N × ab indicator matrix for the interaction term188

UAB will have column vectors u
[AB]
ij = u

[A]
i ◦ u[B]

j , the Hadamard products of every unique189

pair of column vectors u
[A]
i and u

[B]
j across the indicator matrices for the main factors190

UA and UB, respectively. We further stipulate that the resulting columns of UAB shall191

be ordered as [u[AB]
11 |u[AB]

12 | . . . |u[AB]
1b |u[AB]

21 |u[AB]
22 | . . . |u[AB]

2b | . . . |u[AB]
ab ] and shall refer to this192

entire operation as the concatenation of columnwise Hadamard products of vectors, denoted193

hereafter by “⊡”. The two-way crossed model may then be written as194

y = µ1+
a∑

i=1

αiu
[A]
i +

b∑
j=1

βju
[B]
j +

a∑
i=1

b∑
j=1

γiju
[AB]
ij + ε

© 2024 Australian Statistical Publishing Association Inc.
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Table 1. Components to include in model matrices (Xfull and Xreduced) for each term (factor A, factor B
and the interaction, A×B) in an ANOVA partitioning of a two-way crossed design using Type I, II or III
SS. Note also that Type I SS produces a sequential fit, where the ordering of the terms matters. Below
is shown a sequential fit of factor A, then B given A, and finally the interaction given the main effects.
In the special case of a balanced design, XA, XB and XAB are mutually orthogonal, and the three Types
of SS are equivalent.

A B A × B

Type I SS Xfull [1 |XA] [1 |XA |XB] [1 |XA |XB |XAB]

Xreduced [1] [1 |XA] [1 |XA |XB]

Type II SS Xfull [1 |XA |XB] [1 |XA |XB] [1 |XA |XB |XAB]

Xreduced [1 |XB] [1 |XA] [1 |XA |XB]

Type III SS Xfull [1 |XA |XB |XAB] [1 |XA |XB |XAB] [1 |XA |XB |XAB]

Xreduced [1 |XB |XAB] [1 |XA |XAB] [1 |XA |XB]

where parameters βj are derived from the effect parameters β∗
j for factor B in the same way195

as αi were derived from the effect parameters α∗
i for factor A, such that196

E(βj · βj′) =
(
δjj′ − 1

B

)
· σ2

β

where δjj′ = 1 for j = j′, δjj′ = 0 for j ̸= j′ and σ2
β is the variance component for factor197

B. Similarly, γij are derived from the interaction effects γ∗
ij , such that

∑a
i=1 γij = 0 ∀ j198

and
∑b

j=1 γij = 0 ∀ i, with σ2
γ denoting the corresponding variance component for the199

interaction, and we have200

E(γij · γi′j′) =
(
δii′ − 1

A

) (
δjj′ − 1

B

)
· σ2

γ .

Next, for the partitioning, an orthogonal matrix of contrasts corresponding to the201

interaction term, XAB can be obtained as the concatenation of columnwise Hadamard202

products of vectors of the X matrices for main effects, i.e., XAB = XA ⊡XB. These are203

then used to produce appropriate projection matrices for each term in the model under a204

desired Type of SS (Table 1). For example, a projection matrix for the interaction term may205

be obtained by HAB = Hfull −Hreduced, where Xfull =
[
1 | XA | XB | XAB

]
and Xreduced =206 [

1 | XA | XB

]
. This corresponds to either Type II or III SS (sensu Searle 2006), explicitly207

conditioning the interaction term on main effects†.208

†For a detailed discussion of the Types of SS and what they measure under a variety of hypotheses, consult
Searle (2006).
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Having chosen the Type of SS and calculated an associated HAB accordingly, the209

expectation of the SS for the interaction term is then210

E
(
tr

[
HAByy

T
])

= σ2
γ · tr

HAB

a∑
i=1

a∑
i′=1

b∑
j=1

b∑
j′=1

u
[AB]
ij u

[AB]T
i′j′

(
δii′ − 1

A

) (
δjj′ − 1

B

)
+ σ2

ε · tr[HAB].

211

Let ∆B be a b× b matrix of elements {∆jj′} =
{
δjj′ − 1

B

}
and define ∆AB = ∆A ⊗∆B,212

a Kronecker product of dimension ab× ab, then the EMS for the interaction term is213

E (MSAB) =
1

(a−1)(b−1)

{
tr

[
HABUAB∆ABU

T
AB
]
· σ2

γ + tr [HAB] · σ2
ε

}
.

214

The EMS for factor A is215

E (MSA) =
1

(a−1)

{
tr

[
HAUA∆AU

T
A
]
· σ2

α +

tr
[
HAUAB∆ABU

T
AB

]
· σ2

γ +

tr [HA] · σ2
ε

}
216

and the EMS for factor B is217

E (MSB) =
1

(b−1)

{
tr

[
HBUB∆BU

T
B
]
· σ2

β +

tr
[
HBUAB∆ABU

T
AB

]
· σ2

γ +

tr [HB] · σ2
ε

}
.

218

The EMS for each term in the model is a linear form in variance components, with coefficients219

on each component derived from appropriate H, U and ∆ matrices. In each case, the H220

matrix identifies contrasts of sampled levels of factors, while U and ∆ matrices together221

reflect the underlying model and population parameter space.222

2.3. Nested design223

Consider factor B fully nested within factor A such that, for each level i of factor A, i =224

1, . . . , a, there are j = 1, . . . , bi levels of factor B with associated effects β∗
j(i) each drawn225

independently from a population of Bi possible levels. As before, we can assert without loss226

of generality a centering in the inference space βj(i) =
(
β∗
j(i) −

∑Bi

j=1 β
∗
j(i)/Bi

)
∀ i and we227

have228

E(βj(i) · βj′(i)) =
(
δjj′ − 1

Bi

)
· σ2

β(α) ∀ i

© 2024 Australian Statistical Publishing Association Inc.
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where σ2
β(α) is the variance component for the nested factor†. Now, consider matrix UB(A) =229

[u[B(A)]
1(1) |u[B(A)]

2(1) | . . . |u[B(A)]
b1(1)

| . . . |u[B(A)]
1(a) |u[B(A)]

2(a) | . . . |u[B(A)]
ba(a)

], a set of ordered indicators for the230

effects of the nested factor. The two-way nested model is231

y = µ1+
a∑

i=1

αiu
[A]
i +

a∑
i=1

bi∑
j=1

βj(i)u
[B(A)]
j(i) + ε.

For the ANOVA partitioning, matrix XB(A) is constructed by creating a set of contrasts232

for each set of bi columns in UB(A) separately within each of the i = 1, . . . , a levels of233

factor A, i.e., x[B(A)]
j(i) = (u[B(A)]

j(i) − u[B(A)]
bi(i)

), j = 1, . . . , (b− 1), ∀ i and the number of columns234

of XB(A) is
∑a

i=1(bi − 1). We generally would obtain HB(A) as Hfull −Hreduced where235

Xfull =
[
1 | XA | XB(A)

]
and Xreduced =

[
1 | XA

]
, while for factor A, the projection matrix236

HA is obtained most naturally using Xfull =
[
1 | XA

]
and Xreduced =

[
1
]
, corresponding to a237

sequential Type I SS.238

Let ∆B(A) be a block diagonal matrix obtained from the direct sum [∆B(1) ⊕∆B(2) ⊕239

. . .⊕∆B(a)], where ∆B(i) is a bi × bi matrix of elements
{
δjj′ − 1

Bi

}
∀ i. The expectation240

of the SS for the nested term is241

E
(
tr

[
HB(A)yy

T
])

= σ2
β(α) · tr

HB(A)

a∑
i=1

bi∑
j=1

bi∑
j′=1

u[B(A)]
j(i) u[B(A)]T

j′(i)

(
δjj′ − 1

Bi

)
+ σ2

ε · tr[HB(A)].

242

The EMS for factor A in this model is then243

E (MSA) = df−1
A

{
tr

[
HAUA∆AU

T
A

]
· σ2

α +

tr
[
HAUB(A)∆B(A)U

T
B(A)

]
· σ2

β(α) +

tr [HA] · σ2
ε

}
244

and the EMS for the nested term is245

E (MSB(A)) = df−1
B(A)

{
tr

[
HB(A)UB(A)∆B(A)U

T
B(A)

]
· σ2

β(α)+

tr [HB(A)] · σ2
ε

}
,

246

where degrees of freedom for A and B(A) are denoted by dfA = (a− 1) and dfB(A) =247 ∑a
i=1(bi − 1), respectively.248

†We could also rather straighforwardly allow for different values of σ2
β(α)

within different levels of factor A,
but this is not addressed in any further detail here.
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2.4. Finite population sampling249

The nested case immediately points to the obvious extension of sampling l(k) =250

1, . . . , nk units from a finite population of Nk possible sampling units within each of251

k = 1, . . . , c cells (combinations of all sampled levels of all factors) in a given ANOVA252

design, with
∑c

k=1 nk = N . Each observation yl(k) has an associated unknown error ε∗l(k),253

and derivation of the EMS follows directly by considering this as a nested term in the ANOVA254

model, where the indicator matrix for the error term, UR, is I and ∆R is a N ×N block255

diagonal matrix comprised of the direct sum [∆R(1) ⊕∆R(2) ⊕ . . .⊕∆R(c)], where ∆R(k) is256

a nk × nk matrix of elements
{
δll′ − 1

Nk

}
∀ k. For the one-way case under finite sampling,257

the EMS for factor A is258

E (MSA) = df−1
A

{
tr
[
HAUA∆AU

T
A

]
· σ2

α + tr [HA∆R] · σ2
ε

}
and the EMS for the residual is259

E (MSR) = df−1
R

{
tr [(I−Hfull)∆R] · σ2

ε

}
where, as above, dfA = (a− 1) and dfR =

∑c
k=1(nk − 1) denote degrees of freedom for260

MSA and MSR, respectively.261

3. A new synthesis262

3.1. General result263

Consider any ANOVA model comprising a partitioning among a total of T terms,264

including one or more main effects (e.g., A, B, C, etc.), possibly some interaction terms (e.g.,265

A×B, A×B×C, etc.) and/or some nested terms (e.g., B(A), C(A×B), etc.), and a residual266

(R). Now, as outlined in detail in Section 2 and Appendix II, every term t = 1, . . . , T , with267

degrees of freedom dft, has an associated variance component σ2
t and an indicator matrix268

Ut, according to the model, along with an associated matrix ∆t which will identify sizes269

of populations of levels for each factor according to the experimental design. In addition,270

every term t = 1, . . . , T has an identifiable contrast matrix Xt (of rank dft) and associated271

projection matrix Ht, which provides the desirable partitioning according to a chosen Type of272

SS. For any model where there exists replication of sampling units within one or more cells,273

we assert that the T th term in the full ANOVA model will be the residual, that Ut=T = I,274

that ∆t=T = ∆R as in Section 2.4, and that Ht=T = (I−Hfull) where Hfull is constructed275

from Xfull =
[
1 | Xt=1 | Xt=2 | . . . | Xt=(T−1)

]
.276
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The EMS for any term of interest Ω is then simply given by277

E (MSΩ) = df−1
Ω

{
T∑

t=1

tr
[
HΩUt∆tU

T
t

]
· σ2

t

}
. (6)

A proof of (6) is outlined in Appendix II. This general synthesis holds for any term in any278

balanced or unbalanced ANOVA design, for any types of factors (i.e., fixed, random, or279

anywhere along the spectrum of steps from fixed to random) in any partitioning that may280

be desired using Type I, II or III SS.281

3.2. Multivariate extensions282

We extend the above to multivariate analysis via redundancy analysis (RDA; Rao283

1964; van den Wollenberg 1977) and distance-based redundancy analysis (dbRDA; Legendre284

& Anderson 1999; McArdle & Anderson 2001). Consider N × p matrix Y with column285

vectors y1,y2, . . . ,yp being the observed values for each of ℓ = 1, . . . , p response variables286

Yℓ obtained simultaneously from each of i = 1, . . . , N sampling units. Without loss of287

generality, suppose also that each variable is centred on its overall sample mean. Consider288

also a single ANOVA design and associated model, applicable to all response variables289

simultaneously, with separate individual vectors of parameters for each variable accordingly;290

e.g., in the one-way case, we may have, for each variable ℓ,291

yℓ = µℓ1+Uℓαℓ + εℓ.

Correspondingly, for every variable ℓ there will be a variance component σ2
ℓt for each292

term t = 1, . . . , T in the ANOVA model. Indeed, for any term, there will be a full p× p293

variance-covariance matrix of parameters, Σt. RDA is a type of multivariate multiple294

regression, where interest lies in explaining variation in matrix Y by reference to factors295

or explanatory variables held in X. For further details regarding RDA, see chapter 11296

in Legendre & Legendre (2012). RDA, however, effectively ignores covariance structures297

among the variables in Y and achieves a partitioning of the total SS, defined as tr
[
YYT

]
=298 ∑p

ℓ=1 tr
[
yℓy

T
ℓ

]
, given some projection matrix H (constructed from matrix X), as299

tr
[
YYT

]
= tr

[
HYYT

]
+ tr

[
(I−H)YYT

]
.

Thus, the direct generalisation of 6 for RDA is clearly given by300

E (MSΩ) = df−1
Ω

{
T∑

t=1

tr
[
HΩUt∆tU

T
t

]
· tr [Σt]

}
. (7)
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To extend this to a dissimliarity-based setting, suppose distances or dissimilarities are301

calculated among every pair of sampling units based on all p variables, yielding N ×N302

matrix D = {dii′}, (i = 1, . . . , N , i′ = 1, . . . , N ). Using the transformation of Gower (1966)303

to obtain G =
(
I− 1

N 11T
)
A
(
I− 1

N 11T
)
, where A = {aii′} =

{
− 1

2d
2
ii′

}
, the dbRDA304

partitioning for any projection matrix H is then305

tr [G] = tr [HG] + tr [(I−H)G]

and the generalisation of (6) for dbRDA is306

E (MSΩ) = df−1
Ω

{
T∑

t=1

tr
[
HΩUt∆tU

T
t

]
· ϑt

}
(8)

where ϑt is a pseudo multivariate component of variation defined in the space of the chosen307

dissimilarity measure (see Section 4.2 below and Anderson et al. (2005) for an example308

and interpretation). Note that in the special case where D contains Euclidean distances309

calculated directly on Y, then YYT = G, dbRDA is equivalent to RDA and (8) reduces to310

(7) as ϑt = tr [Σt]. Furthermore, if D contains Euclidean distances and p = 1, then dbRDA311

is equivalent to a univariate ANOVA partitioning along a single axis, hence (8) reduces312

to (6) and ϑt = σ2
t . See Legendre & Anderson (1999), McArdle & Anderson (2001) and313

Anderson (2017) for more details regarding the relationship between dbRDA, RDA and314

ANOVA. Although other forms of partitioning multivariate systems based on dissimilarities315

are available (e.g., Anderson & Robinson 2003), we shall not pursue these further here.316

4. Estimation and hypothesis-testing317

4.1. The generalised F-test318

We shall presume that interest lies in estimating ϑΩ and in testing hypotheses of the319

type H0: ϑΩ = 0, where Ω signifies a term (or set of terms) of interest in an ANOVA320

model. We shall let Φ denote the set of all terms in the model. Recognizing that ϑΩ may321

represent a classical univariate variance component, or a multivariate measure of variation in322

the space of some chosen distance or dissimilarity measure, we shall refer to ϑΩ generally as323

a “component of variation” attributable to term Ω.324

Let Wt = Ut∆tU
T
t and suppose also that the coefficient on the component of variation325

for term t in the EMS for term Ω is given by KΩt = df−1
Ω HΩWt, then our synthesis is326

E (MSΩ) =
T∑

t=1

KΩt · ϑt
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which is the sum of two parts, namely327

KΩΩ · ϑΩ and
TΩ−∑
t=1

KΩt · ϑt, t ∈ ΦΩ−

where ΦΩ− is the set of all terms, but omitting the term Ω itself, and TΩ− is the number of328

terms in the set ΦΩ− .329

Now, let M denote a vector of length T containing the mean squares of all terms in Φ.330

There exist two vectors, l1 and l2, each of length T , that contain strictly non-negative values331

such that332

E
(
lT1M

)
= E

(
lT2M

)
+KΩΩ · ϑΩ. (9)

We then readily build a pseudo F statistic333

FΩ =
lT1M

lT2M

as a suitable criterion to test H0: ϑΩ = 0. Even for univariate cases, a ratio of linear334

combinations of mean squares is not necessarily distributed as a classical F statistic (e.g.,335

Searle, Casella & McCulloch 1992), so we shall generally seek to calculate approximate p336

values empirically using resampling methods. However, for many balanced designs, there337

may be a single mean square MSdenom available from the ANOVA model partitioning such338

that339

E (MSΩ) = E (MSdenom) +KΩΩ · ϑΩ

and hence340

FΩ =
MSΩ

MSdenom
, (10)

all other values in l1 and l2 corresponding to other mean squares being equal to zero,341

respectively. Note further that, in the special case where p = 1 and D contains Euclidean342

distances calculated directly on Y, FΩ in (10) is the usual classical univariate F statistic,343

hence with known distribution under an additional assumption of normality of the errors in344

this case.345

Values of FΩ under a true null hypothesis may be generated under a simple assertion346

of exchangeability of appropriate exchangeable units, following and extending the work of347

Anderson & ter Braak (2003). Specifically, let Ψ denote the set of all terms other than Ω348

having non-zero values in either l1 or l2 (i.e., the collection of all terms other than Ω appearing349

in either the numerator or denominator of FΩ), and let ΨF denote the set of factors (main350

effects) that appear within any of the terms listed in Ψ (e.g., A and B both appear within the351

term A×B; they also both appear within the term B(A), et cetera). The exchangeable units352
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for the test are then identifiable as the combination of all sampled levels of factors listed353

in ΨF. For example, suppose Ω = B and we discover that Ψ = {A×B, C(B), A×C(B), R},354

then ΨF = {A,B,C} and the exchangeable units are the abc cells corresponding to all355

combinations of sampled levels of factors A, B and C. All of the individual observations356

within each cell “travel together” as a single unit under permutation. If Ψ = {R}, then the357

exchangeable units are simply the original N sampling units.358

Having identified exchangeable units, let Fπ
Ω be a value of FΩ obtained after a random359

equiprobable permutation of the exchangeable units across the full study design§; a p-value360

associated with the test of H0: ϑΩ = 0 is obtained directly and empirically as P (Fπ
Ω ≥ FΩ).361

4.2. Components of variation362

The result in (9) above also provides directly an unbiased ANOVA-type estimator (sensu363

Searle, Casella & McCulloch 1992) for ϑΩ as364

ϑ̂Ω =
(l1 − l2)

T
M

KΩΩ
. (11)

Note that ϑ̂Ω in the multivariate case is distinguishable from a classical estimated variance-365

covariance matrix Σ̂ because the former is a scalar that ignores covariance structures. For366

a univariate case,
√
ϑ̂Ω is a standard deviation, while, for dissimilarity spaces,

√
ϑ̂Ω is367

interpretable as a standard “distance-to-centroid” in the same units as the chosen dissimilarity368

measure.369

Although (11) can produce a negative estimate for ϑΩ, such cases usually go hand-in-370

hand with large p-values in the associated test of H0: ϑΩ = 0. In such cases, a logical course371

of action is generally to remove the term Ω from the model¶ and re-estimate the EMS and372

components of variation for the remaining terms (Fletcher & Underwood 2002).373

With respect to estimation, we note in passing that there is considerable literature374

regarding situations when best linear unbiased estimators (BLUEs) of estimable functions are375

unchanged by a change in covariance structure. For example, BLUEs are unchanged when a376

linear model with uncorrelated errors is instead fitted using an error covariance matrix with377

equi-correlated structure. For more details, see Haslett & Puntanen (2013), Haslett, Puntanen378

§We note that permutation of residuals under either a full or reduced model, as described by Anderson &
ter Braak (2003) would also be possible here; however, the identification of exchangeable units is always of
paramount importance, and must be observed whether one permutes the original observations or some form
of residuals.
¶If there is more than one such term in a given model, this is done sequentially in a step-wise fashion,
beginning with removal of the term having the smallest MS, and with re-estimation of all estimates at each
step.
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& Arendacká (2015), Haslett et al. (2023) and references to earlier work by C. R. Rao and379

others therein.380

4.3. A tailor-made bootstrap381

Confidence intervals for individual components of variation can be estimated using the382

bootstrap (Efron 1982), with due consideration of the structure inherent in the sampling383

design. Bootstrap estimates of a variance are known to be biased (e.g., see Efron (1982);384

see also Appendix B in Anderson et al. (2017)), so some form of correction for the bias is385

desirable (e.g., Hall 1992; Efron & Tibshirani 1993). We suggest that bootstrap realisations386

be constructed via independent resampling (with replacement) of bias-adjusted residuals and387

effects (e.g., Davison & Hinkley 1997; Carpenter, Goldstein & Rasbash 2003; Field & Welsh388

2007).389

First, consider a one-way univariate ANOVA model, as in (5). Let α̂i denote estimated390

effects and ε̂ij denote residuals (estimated errors), for i = 1, . . . , a and j = 1, . . . , ni. The391

average of the squared estimated effects is given by392

SA =

a∑
i=1

α̂2
i /a

To adjust for bias under bootstrapping, we can find a constant κA that transforms the393

individual estimated effects such that their average square is equal to the unbiased estimated394

variance component σ̂2
α = ϑ̂A from (11). Specifically, provided ϑ̂A > 0,395

κA = (ϑ̂A/SA)
1
2

yielding transformed effects396

α̃i = κAα̂i.

(If ϑ̂A ≤ 0, then we may assume σ2
α = 0 is true and set α̃i = 0 ∀ i). Generally, if σ2

α > 0,397

then we expect ϑ̂A > SA, so transformed effects are “inflated” to counter the bias under398

bootstrapping. Smilarly, we have transformed residuals399

ε̃ij = κRε̂ij

where κR = (ϑ̂R/SR)
1
2 = (N/(N − a))

1
2 .400

Now, we draw separate independent bootstrap resamples with replacement of the401

transformed effects α̃i (a times) and ε̃ij (N times) to obtain αb
i and εbij . A new bootstrap402
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realisation is then constructed as403

ybij = µ̂+ αb
i + εbij (12)

where µ̂ = 1
N

∑a
i=1

∑ni

j=1 yij . Bootstrap estimates of variance components σ2
α and σ2

ε404

are given directly through (11) as ϑ̂b
A and ϑ̂b

R, respectively. Repeating the bootstrapping405

procedure a large number of times yields distributions of each of ϑ̂b
A and ϑ̂b

R. The (ϱ/2) and406

(1− ϱ/2) quantiles of each of these empirical distributions can be used directly to provide a407

(1− ϱ)% confidence interval for each of σ2
α and σ2

ε , respectively. If desired, the full bootstrap408

distribution (as a histogram or density) can also optionally be plotted (Schweder & Hjort409

2016; Fletcher, Dillingham & Zeng 2019).410

If the sampling fraction a/A = 1, then we neither transform nor bootstrap resample the411

estimated effects α̂i, and the new bootstrap sample is constructed as412

ybij = µ̂+ α̂i + εbij

In this case, the bootstrap distribution of ϑ̂b
A may be adjusted a posteriori for any bias by, for413

example, centering its median on ϑ̂A.414

Next, suppose A is known and finite such that the sampling fraction a/A is less than415

1 but is not trivially small. In this case, we can begin by expanding the a levels out to A416

levels by sampling transformed effects α̃i a total of (A− a) times with replacement. These,417

alongside the a original values of α̃i, provide a finite population of bootstrapped effects that418

is now of length A (i.e., αb
i′ , i

′ = 1, . . . , A). We then sample a times from these A levels419

without replacement and apply (12). The limiting case of a = A yields the same result as420

the fixed factor case, while the limiting case as A → ∞ yields the random factor case. We421

note that our proposed resampling approach here conceptually resembles the ‘mirror-match’422

bootstrap method of Sitter (1992a,b) for stratified random samples without replacement.423

Results regarding formal theoretical properties and the empirical behaviour of our proposed424

approach across a variety of contexts, including comparisons with other potential methods425

(e.g., Sitter 1992b; Booth, Butler & Hall 1994; Saigo 2010) remains a topic for future426

research.427

4.4. Bootstrapping in the multivariate dissimilarity-based context428

Consider the partitioning of a data cloud defined by an N ×N dissimilarity matrix429

D according to any multi-factor ANOVA model with T terms. Unbiased estimators ϑ̂t430

are obtained for components of variation associated with each term in the model t =431

1, . . . , T , using (11). Let the N ×N matrix Q denote the principal coordinate (PCO) axes432
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(Gower 1966), obtained by finding latent roots (eigenvalues) λ1, λ2, . . . , λN and associated433

eigenvectors of matrix G, each eigenvector q1,q2, . . . ,qN being scaled such that its sum of434

squares is equal to the absolute value of its corresponding latent root.435

Restricting ourselves here to the use of a Type I (sequential) SS in the partitioning and436

construction of appropriate projection matrices Ht, the estimated effects T̂t associated with437

each term t, having individual columns τtℓ, ℓ = 1, . . . , N , one for each PCO axis, are given438

by439

T̂t = HtQt

So, the 1×N vector St = {Stℓ} of average squared estimated effects for term t on each of440

the ℓ = 1, . . . , N PCO axes is given by441

St =
(

1
N

)
1TT̂t ◦ T̂t

Next we can estimate components of variation ϑ̂tℓ for each term t along each PCO axis qℓ by442

first calculating the mean squares of the ANOVA model443

MStℓ = df−1
t tr

[
Htqℓq

T
ℓ Ht

]
and repeatedly applying (11) for each PCO axis in turn.444

The N -length vector of required transformation constants κt = {κtℓ} has elements445

κtℓ = (ϑ̂tℓ/Stℓ)
1
2 if ϑ̂tℓ ≥ 0,

else κtℓ = 1. Transformed effects are then given by446

T̃t = T̂t · diag (κt) .

We perform the bootstrap operation paying close attention to the original sampling447

design. Each effect is sampled independently of other effects and the number of bootstrap448

samples taken for a given effect is equal to the number of sampled levels for the449

associated term in the original study design. Furthermore, the inherent multivariate structure450

is maintained empirically under bootstrapping by sampling the entire row of effects451

simultaneously across all PCO axes in a given bootstrap draw (e.g., for factor A in a one-452

way design, we will sample a rows of the N ×N matrix T̃A then replicate each row an453

appropriate number of times (ni) to obtain bootstrap matrix Tb
A.454

Let Φ denote the set of terms having a sampling fraction of 1 (i.e., fixed effects) and Υ455

denote the set of terms having a sampling fraction < 1 and we generate bootstrap samples for456
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Figure 1. Schematic diagram of an hierarchical sampling design used by Terlizzi et al. (2005) to
examine effects of a sewage outfall on subtidal molluscan assemblages.

the full design in the space of the full set of N PCO axes as457

Qb =
∑
t∈Φ

T̂t +
∑
t∈Υ

T̃b
t

To generate the bootstrap dissimilarity matrix, we must potentially carefully consider the458

PCO axes in two separate sets Qb =
[
Qb+ | Qb−

]
; namely, those corresponding to positive459

eigenvalues (λℓ ≥ 0, denoted Qb+) and those corresponding to strictly negative eigenvalues460

(λℓ < 0, denoted Qb−) (see McArdle & Anderson 2001). Let the separate N ×N Euclidean461

distance matrices based on Qb+ and Qb− be denoted by Db+ and Db−, respectively. The462

bootstrap dissimilarity matrix is then given by Db with elements463

dbii′ =

∣∣∣∣(db+ii′ )2 − (db−ii′ )2∣∣∣∣ 12
We calculate Gb directly from Db in the usual way and readily obtain ϑ̂b

t for each term464

t by applying (11) accordingly, and confidence intervals based on percentiles are directly465

accessible, just as for the univariate case.466

5. Example: Mediterranean molluscs467

We demonstate the effect of finite inference spaces in mixed models and the increased468

power afforded by our proposed approach through the multivariate analysis of 151 molluscan469

species in Mediterranean rocky subtidal habitats (depth = 3–4 m) located along the south-470

western coast of Apulia, Ionian Sea, Italy in response to potential impacts of a sewage outfall471
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Table 2. PERMANOVA using the new synthesis and Type I (sequential) SS, based on Bray-Curtis
dissimilarities for 151 species of mollusc according to the experimental design described by Terlizzi
et al. (2005), with p values obtained using 9999 random permutations of exchangeable units; “Unique
Fπ” indicates the number of unique values of F obtained under permutation for each term in the model.

Source (Ω) df SS FΩ P Unique Fπ ϑ̂Ω

IvC 1 30352 3.794 0.0221 839 620.85
Locations(IvC) 1 10507 1.466 0.1985 830 123.77
Sites(Locations(IvC)) 6 42992 4.105 0.0001 9804 602.17
Residual 72 125690 1745.7
Total 80 209540

(Terlizzi et al. 2005). Counts of abundance of each species were obtained from each of n = 9472

replicate 20 cm × 20 cm quadrats in each of three random sites (separated by 80–100 m)473

at the outfall location (“I”, putatively impacted) and at each of two control locations (“C1”474

and “C2”). Control locations were chosen randomly from a set of eight possible locations475

separated by at least 2.5 km that provided comparable environmental conditions (in terms476

of slope, wave exposure, type of substrate) to those occurring at the outfall (Glasby &477

Underwood 1998). This yielded an asymmetrical sampling design (Fig. 1) having a total478

of N = 81 sampling units, where greatest interest lies in examining the (fixed) contrast of I479

vs Cs (Glasby 1997).480

The ANOVA model arising from this design has three factors: Impact vs Controls481

(“IvC”, fixed with a = 2 levels), Locations (“L”, nested in IvC, with b1 = 2 controls and482

b2 = 1 impact) and Sites (“S”, random and nested in L with cj(i) = 3 ∀ j = 1, . . . , bi;483

i = 1, . . . , a). The b1 = 2 control locations were chosen randomly from a finite population of484

size B1 = 8, yielding a sampling fraction of b1/B1 = 1
4 , while there was only one (fixed)485

impact location, hence b2/B2 = 1. This example thus serves also to show that our new486

synthesis caters easily to asymmetry not just in sampled numbers of levels, but also in sizes487

of inference spaces for different sub-sets of an hierarchical design.488

A partitioning of the multivariate variation according to the full ANOVA model on489

the basis of a Bray-Curtis dissimilarity matrix was done using the new synthesis and490

Type I (sequential) SS, with associated tests obtained using 9999 random permutations491

of appropriate exchangeable units for each term (i.e., PERMANOVA; Anderson 2001;492

Anderson, Gorley & Clarke 2008). The analysis provides evidence against H0: ϑIvC = 0,493

suggesting a significant impact of sewage on mollusc assemblages (Table 2, p = 0.0221). A494

clear effect is also evidenced in a metric multi-dimensional scaling (MDS) ordination plot of495

the centroids for each site (Fig. 2).496

The relative sizes of components of variation for each term in the model, along with their497

associated empirically derived confidence intervals, based on the tailor-made bootstrap, are498
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Figure 2. Metric MDS plot of the centroids in Bray-Curtis space for molluscan assemblages at each
of the nine sites, with three sites at each location (“I”, “C1” and “C2”). Also shown (as smaller-scale
points) are the centroids obtained from 50 bootstrap samples taken within each site (see Clarke & Gorley
2015, for details), providing a visual assessment of within-site variation.

captured visually by the diagram shown in Fig. 3. This graphic is highly similar in its purpose499

to that suggested by Gelman (2005) in a Bayesian context for univariate ANOVA. Here,500

however, we propose its use more generally for visualising and comparing the contributing501

sources of variation for models of multivariate dissimilarity-based data clouds, with minimal502

assumptions. In the present example, small-scale residual variation in assemblage structure503

(from one sampling unit to the next) is the largest estimated component, followed by the effect504

of the impact, then site-level variation (Fig. 3). Consistent with the results of the hypothesis505

test shown in Table 2 (P = 0.1985), the bootstrap confidence interval associated with the506

component of variation at the spatial scale of Locations includes the value of 0.507

Historical wisdom for such a design would treat Locations as a random factor508

(Underwood 1992; Glasby 1997), hence B1 = ∞. The consequence of this choice (Table 3),509

as in many environmental impact study designs (Hewitt, Thrush & Cummings 2001), is to510
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Figure 3. Estimated component of variation for each term in the three-factor hierarchical model for
molluscan assemblages, based on Bray-Curtis dissimilarities, with 95% confidence intervals obtained
using 10,000 bootstrap resamples generated from tailor-made bias-adjusted estimated effects and
residuals.

yield a test for potential impact (H0: ϑIvC = 0) that lacks power – quite unwise in light511

of the precautionary principle (Fairweather 1991). However, under the new synthesis, by512

gradually decreasing the size of the population of locations to which inferences are to be513

drawn (B1), we observe: (i) a gradual change in the size of the coefficient (KΩL) attending514

the component of variation for Locations (ϑL) in the EMS for IvC, (ii) a gradual increase515

in the relative importance of MSS compared to MSL in the denominator for FΩ and (iii)516

concomitant increases in FIvC, ϑ̂IvC and hence, power (Table 3). To reduce the inference space517

so far as to treat Locations as fixed (B1 = 2, hence using MSS alone as denominator) clearly518

trivialises the analysis – inferences in this case would be limited to a comparison of location519

I with just these two other locations (C1 and C2) and no others. A correct analysis relies on520

the new synthesis and the logic attending the choice of control locations, where B1 = 8 was521
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Table 3. Effects of changes to the size of the inference space (B1, the number of
control locations from which b1 = 2 were drawn) on the test of H0: ϑIvC = 0.
For Ω = IvC, we have E (MSΩ) = ϑR + 9ϑS +KΩLϑL + 36ϑIvC and KΩL

depends on B1. All p values were obtained using 9999 random permutations of
exchangeable units.

B1 KΩL Denominator FIvC P ϑ̂IvC

∞ (random) 27 MSL 2.89 0.335a 551.2
30 8.4 0.69 ·MSS + 0.31 ·MSL 3.70 0.022 615.2
20 8.1 0.70 ·MSS + 0.30 ·MSL 3.72 0.021 616.2
10 7.2 0.73 ·MSS + 0.27 ·MSL 3.77 0.026 619.3
8 6.75 0.75 ·MSS + 0.25 ·MSL 3.79 0.022 620.9
6 6.0 0.78 ·MSS + 0.22 ·MSL 3.84 0.019 623.4
4 4.5 0.83 ·MSS + 0.17 ·MSL 3.93 0.019 628.6
3 3 0.89 ·MSS + 0.11 ·MSL 4.03 0.013 633.8

2 (fixed) 0 MSS 4.24 0.016 644.1
a For B1 = ∞, there are only three unique value of FΩ under permutation of the

exchangeable units, which are whole locations in this case. For all other cases (i.e., where
B1 is finite and the denominator includes a mixture of MSS and MSL), the number of
unique values of FΩ is 839.

known a priori (Tables 2, 3). This affords greater power, yet retains meaningful broad-scale522

conclusions for the ecological system (the Italian coast) under study.523

6. Discussion524

We provide a new synthesis for deriving expectations of mean squares for any ANOVA525

design. Unlike previous methods, which require complex sets of rules, governed by what526

appear to be arbitrary parameterizations, our method is direct and has no explicit assumptions527

in this regard, only the fundamental notion of ANOVA being a linear model with a528

partitioning of variation attributable to factors of interest and encapsulated by the calculation529

of sums of squares.530

The approach we offer gives the experimenter flexibility to define any given factor as531

being fixed, random or somewhere in between, when the levels drawn are a known fraction532

of a finite population of possible levels. It is clear that the role of finite population corrections533

(and, more implicitly, sample survey methodology in general) is key to our approach. When534

a factor is intermediate between fixed and random, the link between sampling theory and535

experimental design is explicit. We considered here only simple random sampling of levels536

without replacement and with equal probability. There is clearly scope similarly to explore537

the implications for complex ANOVA designs of other sampling strategies for factor levels,538

such as stratified sampling (Hartley & Rao 1969), systematic sampling (Hartley 1966) or539

sampling with unequal probabilities (Hartley & Rao 1962; Rao, Hartley & Cochran 1962).540
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Our approach gives results equivalent to those provided by Cornfield & Tukey (1956) for541

the two- and three-way balanced crossed designs considered by them; these demonstrate that542

the EMS that attend identification of factors purely as either fixed or random (the extremes543

at either end of the gradual progression) are easily obtained merely as special cases of this544

more general formulation (see Table 1, p. 926 in Cornfield & Tukey 1956). In addition, the545

treatment of factors as either fixed or random under the new synthesis produces EMS equal546

to those obtained by Searle, Casella & McCulloch (1992) when summation restrictions are547

used, yet we neither applied any such restriction in our derivation, nor have we asserted any548

“rules” to govern which coefficients on variance components should (or should not) be set to549

zero||.550

Furthermore, under finite population sampling of levels of random factors in either551

balanced or unbalanced, crossed or nested designs, our approach gives results equivalent552

to those provided by Searle & Fawcett (1970), who similarly began with a centering of553

effect parameters in the inference space (cf. our eq. (1) with eq. (1) on p. 243 in Searle &554

Fawcett 1970). Shifting parameters by a constant in the inference space has no effect on555

the variance component being estimated. The new synthesis thus cleanly resolves previous556

debates regarding the ‘correct’ EMS for ANOVA designs.557

We would agree with Nelder (1998, 2008) that no constraints should be made on558

ANOVA parameters, whether they be fixed or random. We hasten to add, however, that a559

virtually ubiquitous (and non-contentious) assumption in statistical linear models that include560

an intercept is that the errors εij.. are assumed to be independent and identically distributed561

random variables with E(εij..) = 0 ∀ i, j, .. and variance σ2
ε . Similarly, we assume E(αi) = 0562

∀ i for the unknown effect parameters αi associated with individual levels of any factor. In563

other words, both the effects and the errors are already defined by the ANOVA model itself564

as deviations (e.g., as per (5) above), which forms the fundamental basis for constructing565

sums of squares. It follows that if all possible levels αi from the entire population were566

conceptually identifiable (i.e., if the population of levels is finite), then
∑

i αi = 0. This567

is not some un-natural constraint, but rather follows directly from the ANOVA model that568

corresponds mathematically to what is known regarding the population being sampled (e.g.,569

Wilk & Kempthorne 1955).570

The renovation of fixed vs random factors from a dichotomy to a gradual incremental571

progression adds a new degree of refinement, sophistication and flexibility to ANOVA models572

not previously afforded. To a large extent, it obviates the confusion surrounding what is573

∥This begs the question of what role, if any, the purported EMS derived in the absence of summation
restrictions (as implemented, e.g., in commonly used software such as ‘proc mixed’ in SAS) could possibly
serve.
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“meant” by a fixed vs a random factor. This comes, however, with a dose of responsibility.574

The onus is on the researcher to provide clarity on the number of sampled (or observed575

or chosen) levels relative to the size of the inference space – a logical thing to require for576

the rigorous statistical assessment of any factor. In practice, there may be cases where the577

size of the population of levels for a given factor (A), hence the sampling fraction (a/A), is578

unknown. Typically, this would occur when the number of levels is large/not easily counted,579

in which case treating the factor as random will generally be the most appropriate, albeit580

the most conservative, approach. One might also examine results across a range of plausible581

values for A to witness directly the implications of this choice on inferences. In addition, for582

a given set of data, the population size from which levels are drawn for a given factor and to583

which inferences are ultimately intended might indeed change with changes in the underlying584

conceptual logic and context of the study. A new analysis altering population sizes can easily585

be constructed from the same dataset, accordingly.586

We agree with Gelman (2005) that analysis of variance is more important than ever. He587

suggested that, for any source of variation Ω there are two “natural” variance parameters to588

estimate: the (super)population variance (σ2
Ω) and the finite-population variance based on the589

observed (estimated) effects (s2Ω)††. He suggested that there is no difference between a fixed590

and a random factor, but instead loosely aligns a random factor with interest in σ2
Ω and a fixed591

factor with interest in s2Ω.592

In practice, however, there is little to distinguish them under Gelman’s scheme, as these593

two “variances” are given the same point estimate, and although σ2
Ω has more uncertainty,594

Gelman’s paper focused on ANOVA partitioning to achieve estimates of s2Ω (which he595

terms “finite-population variances”). He computed EMS and estimated s2Ω for each term,596

indiscriminantly treating all factors as random and providing measures of uncertainty via597

simulation under highly specific (i.e., normal) assumptions.598

The distinction between fixed and random factors is more tangible in Bayesian modeling599

by differences in their priors on the effect parameters. Generally, α∗
i ∼ N(0, σ2

Ω) ∀i and600

for fixed effects σ2
Ω = ∞*, while for random effects σ2

Ω is given a scaled inverse-χ2601

conjugate hyperprior distribution (Gelman et al. 2013)**. Gelman (2005) advocated setting up602

hierarchical models “automatically” with all terms being treated as random effects for each603

row of the ANOVA table as an effective strategy. Resulting graphics, showing relative effect604

sizes and uncertainty associated with each ANOVA term, are very appealing.605

††Although we would prefer to use Greek letters for unknown parameters, we are using Gelman’s own
notation here.
∗In practice, the prior will not be specifed as having an infinite variance, simply a very large one.
∗∗i.e., σ2

Ω ∼ Inv-χ2(νΩ, σ
2
0Ω). The non-informative prior density is generally taken as uniform on σΩ, which

corresponds to νΩ = −1 and σ0Ω = 0. For further details, consult Gelman et al. (2013).
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There is nothing offered by such a scheme, however, to acknowledge potential real606

limitations in the sizes of inference spaces associated with individual factors. It is also not607

clear how even the usual Bayesian models for fixed vs random factors might accommodate608

such genuine finite-ness; this is clearly a fruitful topic for future research.609

Gelman’s (2005) exposition is at least partially motivated by perceived difficulties in610

performing classical ANOVA for complicated data structures with nesting, crossing and611

lack of balance. Such difficulties are here fully resolved by the new synthesis, which,612

when coupled with simple exchangeability arguments and appropriate re-sampling methods,613

provides for hypothesis-testing and estimation alike. Unlike classical, maximum likelihood or614

Bayesian approaches, specific assumptions regarding distributions of effects (e.g., normality)615

are not necessary here.616

Extension to multivariate analysis (RDA, dbRDA) further generalises the synthesis for617

rigorous assessment of components of variation based on distance or dissimilarity matrices618

via PERMANOVA. Future research may work towards more directed multivariate modeling619

of correlation structures and handling variation in the shapes of dispersion clouds across620

different levels of factors or cells in ANOVA designs. Nevertheless, overall, we expect the621

new synthesis given here will result in an increase in the utility, importance and power of622

analysis of variance in applied research.623

Appendix I624

Our purpose here is to prove the validity of (2) and (3). Suppose factor A has a total625

population of possible levels A, and each level has an associated effect α∗
i , i = 1, . . . , A. In a626

given study, the researcher samples a levels from the population of possible levels. If a = A,627

(i.e., if all of the levels of interest for statistical inference are included in the study), then628

factor A is fixed and a/A = 1 and 1/A = 1/a. If A is arbitrarily large relative to a, so far as629

to be considered effectively infinite, then factor A is random and we consider the sampling630

fraction in the limit as631

lim
A→∞

a/A = 0.

In addition, for this case of a random factor, we have632

lim
A→∞

1/A = 0.

Assume that the effects α∗
i ∀ i are independent and identically distributed as random633

variables with mean µα and variance σ2
α. Thus, E(α∗

i · α∗
i′) = µ2

α ∀ i ̸= i′ and E(α∗
i · α∗

i ) =634

µ2
α + σ2

α. Let αi =
(
α∗
i −

∑A
i=1 α

∗
i /A

)
be the centred effects in the inference space. So635

© 2024 Australian Statistical Publishing Association Inc.
Prepared using anzsauth.cls

Page 27 of 36 Australian & New Zealand Journal of Statistics



For Review Only

M J ANDERSON, R N GORLEY, AND A TERLIZZI 27

E(αi) = 0. We therefore have:636

E (αi · αi′) = E
{[

α∗
i − 1

A
(α∗

1 + α∗
2 + . . .+ α∗

A)
]
×[

α∗
i′ − 1

A
(α∗

1 + α∗
2 + . . .+ α∗

A)
]}

which can be re-written as637

E (αi · αi′) = E
{
α∗
iα

∗
i′ − 2

A

[
(α∗

i )
2
+ (A− 1)α∗

iα
∗
i′

]
+ 1

A2

[
A (α∗

i )
2
+A (A− 1)α∗

iα
∗
i′

]}
and then simplified to638

E (αi · αi′) = E
{
α∗
iα

∗
i′ − 1

A

[
(α∗

i )
2
+ (A− 1)α∗

iα
∗
i′

]}
,

yielding the following639

E (αi · αi′) = E
{

1
A
α∗
iα

∗
i′ − 1

A
(α∗

i )
2
}
.

Now, by substitution, we have640

E (αi · αi′) =
1
A

(
µ2
α

)
− 1

A

(
µ2
α + σ2

α

)
,

which proves (2), i.e.,641

E(αi · αi′) = − 1
A · σ2

α ∀ i ̸= i′,

Next, we can similarly consider E
(
α2
i

)
as642

E (αi · αi) = E
{[

α∗
i − 1

A
(α∗

1 + α∗
2 + . . .+ α∗

A)
]
×[

α∗
i − 1

A
(α∗

1 + α∗
2 + . . .+ α∗

A)
]}

Expanding the square, as we have done before, we can write643

E (αi · αi) = E
{
(α∗

i )
2 − 2

A

[
(α∗

i )
2
+ (A− 1)α∗

iα
∗
i′

]
+ 1

A

[
(α∗

i )
2
+ (A− 1)α∗

iα
∗
i′

]}
,

and simplifying this yields644

E (αi · αi) = E
{(

1− 1
A

)
(α∗

i )
2 −

(
1− 1

A

)
α∗
iα

∗
i′

}
.

By substitution, we can then write645

E (αi · αi) =
(
1− 1

A

) (
µ2
α + σ2

α

)
−

(
1− 1

A

)
µ2
α,
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which proves (3), i.e.,646

E (αi · αi) =
(
1− 1

A

)
· σ2

α ∀ i

Q.E.D.647

Appendix II648

Our purpose here is to outline a proof of (6). Define the ANOVA linear model for centred649

response data, y, as:650

y =
∑
t

∑
i

αtiuti, t = 1, . . . , T ; i = 1, . . . , at (13)

where αti is the centred effect of level (or cell) i for term t and uti indicates by 1 (or 0)651

the presence (or absence) of an individual sampling unit within level (or cell) i for term t,652

respectively. More specifically, each term has i = 1, . . . , at levels (or cells) and consists of653

one of the following: (i) a single main effect; (ii) an interaction among two or more crossed654

terms; or (iii) a factor that is nested, either within another single factor or within a combination655

of levels of other factors. Note that (iii) accommodates the inclusion of an error term as a656

factor nested in all combinations of levels of the other factors in the model. We shall assume657

effects for a given term have a common variance, denoted as Var(αti) = σ2
t .658

Main effects. For any given term t comprised of any single factor standing as a main659

effect in the model, we consider the individual effects α∗
ti, associated with individual levels660

of the factor (i = 1, . . . at) to have been drawn randomly from a population of size At,661

so at ≤ At. Considering the two ends of the step-wise spectrum, at one end we may have662

at = At, corresponding to a fixed factor. At the other end, At is arbitrarily large, and may663

be treated in the limit to approach infinity, corresponding to a random factor. For each main664

effect, we assert a centering in the inference space (as in Section 2.1), so665

αti = α∗
ti −

At∑
i=1

α∗
ti/At

and thus, for any main effect term t,666

E(αti · αti′) =
(
δtii′ − 1

At

)
· σ2

t (14)

where δtii′ = 1 for i = i′ and δtii′ = 0 for i ̸= i′. Furthermore, we shall let ∆t be an at × at667

matrix comprised of the elements {∆tii′} =
{
δtii′ − 1

At

}
.668

Interactions. For any given term t comprised of an interaction among constituent terms669

t′, t′′, t′′′, ... etc., the total number of cells, denoted at, will be equal to the number of670
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combinations of levels of all constituent terms involved in the interaction. Each cell will671

have a corresponding centred interaction effect αti, (i = 1, . . . , at). Specifically, we assert672

a centering of the interaction effects in the inference space (as in Section 2.2) across each673

margin of the constituent terms involved in the interaction t′, t′′, t′′′, ... etc., and we define674

∆t for an interaction term t to be constructed as a Kronecker product of the ∆ matrices of675

its constituent terms, i.e.,676

∆t = ∆t′ ⊗∆t′′ ⊗∆t′′′ ⊗ . . . , etc. (15)

Nested factors. For any given term t comprised of a factor that is fully nested in one or677

more other factors or their interaction (the upper-level term, t′), there will be j = 1, . . . , bti′678

levels of the nested term, drawn randomly from a population of Bti′ possible levels,679

separately and independently within each of i′ = 1, . . . , at′ levels (or cells) of the upper-level680

factor, yielding a total of at =
∑at′

i′=1 bti′ cells for the nested term. Each cell of the nested681

term t shall have a centred effect βtj(i′) = αti, i = 1, . . . , at. Specifically, for the individual682

effects β∗
tj(i′) associated wtih each cell of the nested term, we assert a separate centering in683

the inference space within each level (or cell) of the upper-level term (as in Section 2.3); that684

is,685

βtj(i′) = β∗
tj(i′) −

Bti′∑
j=1

β∗
tj(i′)/Bti′

We shall assume that centred effects βtj(i′) associated with individual levels of a nested686

term t within a given level (or cell) i′ of some upper-level term t′ are independent of those687

within some other level (or cell) i′′ of the upper-level term, hence E(βtj(i′) · βtj(i′′)) = 0 for688

all i ̸= i′′. Also, for centred effects within a given cell i′ of the upper-level term, we have, for689

all t and for all i′,690

E(βtj(i′) · βtj′(i′)) =
(
δtjj′(i′) − 1

Bti′

)
· σ2

t (16)

where δtjj′(i′) = 1 for j = j′ and δtjj′(i′) = 0 for j ̸= j′. We then define ∆t for a nested691

term t to be a block diagonal matrix obtained from the direct sum ∆t =
∑at′

i′=1 ∆i′ , where692

∆i′ is defined as a bti′ × bti′ matrix having elements
{
∆tjj′(i′)

}
=
{
δtjj′(i′) − 1

Bti′

}
.693

Partitioning. For the ANOVA partitioning, we construct for every term an orthogonal694

contrast matrix of full rank Xt, having dft columns, and its associated projection matrix Ht695

for a chosen Type of sum of squares (Searle 2006). The expectation for the sum of squares696

for any chosen term, Ω, is therefore697

E (SSΩ) = E
(
tr
[
HΩyy

T
])
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Replacing y with the sum in (13), we have698

E (SSΩ) = E

tr

HΩ

∑
t

∑
i

αtiuti ·

[∑
t′

∑
i′

αt′i′ut′i′

]T (17)

We shall assume that all effects αti for any given term t are independent of all effects αt′i′699

associated with any other term t′, so E(αti · αt′i′) = 0 ∀ t ̸= t′ and ∀ i, i′. Thus, the right-700

hand side of (17) reduces to sums of products of effects for individual terms, i.e., where701

t = t′. Furthermore, centering in the inference space as described above for main effects,702

interactions and nested terms ensures that all individual effects are counted as deviations703

from expectations under a true null hypothesis associated with that term in the model; that is,704

for term t, we have the explicit null hypothesis705

H
[t]
0 : αti = 0 ∀ i . (18)

Given the fundamental results provided by (14) for main effects, (15) for interaction terms706

and (16) for nested terms provided above, the contribution of any individual term t to the sum707

on the right-hand side of (17) is708

tr
[
HΩUt∆tU

T
t

]
· σ2

t .

As the expectation of the sum is equal to the sum of expectations, and as every mean square709

is constructed as MSΩ = SSΩ/dfΩ, we have proven (6), i.e.710

E (MSΩ) = df−1
Ω

{
T∑

t=1

tr
[
HΩUt∆tU

T
t

]
· σ2

t

}
.

Q.E.D.711
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